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We propose a methodology for calculating the elastic interaction forces of a large (N ~ 10° or
more) number of dislocations in a solid, for the purposes of molecular-dynamics type modeling of
problems such as dislocation patterning and strain hardening. In order to avoid the N? scaling
resulting from the 1/r decay of the forces, we introduce a variation of the particle-particle—particle-
mesh method of Hockney and Eastwood [ Computer Simulations Using Particles (Institute of Physics,
Bristol, 1988)] , applicable to arrangements of straight, parallel dislocations; extension to fully three-
dimensional problems is discussed. Our version handles the anisotropic interdislocation forces with
high accuracy and is easy to implement. Precision estimates are obtained; they indicate a very
favorable scaling of CPU time with accuracy, which is supported by numerical results.

PACS number(s): 02.70.Ns, 61.72.Lk, 62.20.Fe

I. INTRODUCTION

Numerical simulation of many-dislocation systems is
a promising approach to the problems of understand-
ing and predicting dislocation patterning, and obtain-
ing constitutive relations for materials from the under-
lying dislocation-dislocation interactions. For a review,
see Kubin [1] and references therein. In these simula-
tions, one typically uses the long-ranged elastic interac-
tion between dislocations, together with some assumed
rules about interactions, annihilations, and crossings at
short distances. It has been shown both numerically [2]
and theoretically [3] that in order to avoid nonphysical
phenomena such as spurious patterning wavelengths, one
must retain the whole long-ranged tail of the elastic inter-
actions. This makes direct force calculation an order-N?
process; indeed, in previous work, NV has been limited to
the order of 1000. While this is adequate for some two-
dimensional problems, it is clearly insufficient in three
dimensions. For example, if one represents a dislocation
line as a train of 50 straight segments, then treating 500
dislocation lines would entail the computation of approx-
imately 3 x 108 interactions for each time step in a simu-
lation. Obviously, one needs an algorithm which is faster
than O(N?). The above-mentioned observations of spuri-
ous patterning suggest that high accuracy in the compu-
tation of the forces is important. At the same time, the
mathematical complexity of the dislocation interaction
forces in three dimensions implies that a comparatively
simple and straightforward method of obtaining O(N)
methods is needed.

Several O(N) methods, in which the CPU time is pro-
portional to only the first power of N despite the long
range of the interaction, have been developed to treat
elastic forces, as well as the mathematically analogous
problems of Coulomb and gravitational interactions. See
Ref. [4] for a discussion. These methods generaly fall
into the categories of multipole expansions or “particle-
particle—particle-mesh” (P3M) methods. In the multi-
pole methods, computational speed is achieved by “lump-
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ing” dislocations distant from a reference dislocation (or
particles) into relatively large cells; the contribution from
the distant dislocations is then obtained from the multi-
pole moments of these cells, rather than individual treat-
ment of the distant dislocations. At a given order of mul-
tipole expansion, the error is inversely proportional to a
power of the CPU time. Higher powers can be achieved
by going to higher and higher order in the multipole
expansion, which can be mathematically cumbersome.
Very recently, this method has been applied to the dislo-
cation interaction problem treated here [5].

The P3M method [6] is based on the Ewald princi-
ple of dividing the interaction force into a short-ranged
part and a long-ranged part which is smooth in the
sense that its Fourier transform decays rapidly in k
space. The short-ranged part of the interaction is made
O(N) straightforwardly by the use of neighbor lists. The
smooth part of the force is treated in several steps. First,
the particle positions are converted into a particle den-
sity that is defined on a mesh. Second, using a combina-
tion of the convolution theorem of Fourier analysis and
a fast Fourier transform method, the mesh particle den-
sity is converted into a mesh force density. Finally, the
mesh force density is converted into forces on individual
particles. Finite-ranged spreading functions are used to
obtain the mesh particle density, and a finite-ranged in-
terpolation is used to obtain the individual particle forces
from the mesh forces. The accuracy of the method has
a power-law behavior as a function of CPU time. Higher
powers can be achieved by going to progressively higher-
and higher-order spreading and interpolation functions.
To our knowledge, the P?M method has been imple-
mented only for isotropic forces, which are appropriate
for screw dislocations but not for edge dislocations. In
fact, as is clear from the discussion of Ref. [5], it is not
generally realized that the P3M method can be applied
to dislocation interactions.

Here we present and study a variation of the P3M
method which is straightforwardly applied to anisotropic
forces, and has significant advantages over the multi-
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pole method and existing implementations of the P3M
method. The method consists of using spreading and
smoothing functions which are polynomials of a Gaus-
sian function. The order of the polynomial depends on
the anisotropy of the elastic interaction, and is, for exam-
ple, 2 in the case of edge dislocations and 1 in the case
of screw dislocations. This method leads to improve-
ments both in performance and implementability. With
regard to performance, the method can be thought of
as a P®M method which is “infinite order” in the sense
that the error converges faster than any power of the
CPU time (in fact, it is a decaying Gaussian function
of the CPU time). This is more favorable then either
the multipole method or existing implementations of the
P3M method. With regard to implementation, the for-
mulas are quite simple, and improving the accuracy of
the method is simply a matter of “turning a knob” by
varying the length scale of the spreading and interpolat-
ing Gaussians, which is much simpler than, for example,
adding another order to a multipole expansion. As pre-
sented here, the method is appropriate for the calculation
of forces in two-dimensional dislocation arrays with pe-
riodic boundary conditions. However, generalization to
three dimensions appears to be straightforward, and non-
periodic boundary conditions can be handled by existing
methods [7] for removing periodic replicas.

The organization of the remainder of the paper is as
follows. Section II presents the basic methodology for a
simplified case in which the Burgers vectors are restricted
and only certain components of the force are calculated.
Section III describes the numerical implementation, pro-
vides estimates for the error and CPU time in terms of
fundamental parameters of the method, and gives exam-
ples of both for specific dislocation configurations. Sec-
tion IV outlines the extension to arbitrary Burgers vec-
tors and force components. Section V gives concluding
comments and discusses the extension to three dimen-
sions.

II. DESCRIPTION OF THE METHOD

We treat the problem of N dislocations in a square
repeated cell of size L. Since there is no interaction be-
tween edge and screw dislocations in two dimensions, we
consider systems of dislocations of the same kind: either
all edges or all screws. Throughout this paper, disloca-
tion lines are considered to be parallel to the z axis.

In this section and the following one we give a detailed
treatment of the simplest case, considering only the x
component of the force, with all Burgers vectors in the z
direction for edge dislocations and in the z direction for
screw dislocations:

bscr = (anvb) )

bedge = (5,0,0) . (2.1)

In Sec. IV we explain how to relax this restriction and
calculate all the components of the force for arbitrary
Burgers vectors.

The total force on the :th dislocation from all the rest
is
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T ..
Fi= Z,- Fii (2.2)
where the force that dislocation j exerts on i is Fj; =
b;ib; f(ri;j), the usual elastic interaction which decays as
1/r and is angle dependent, and the prime indicates that
7 =1 terms are absent.

To implement the P3M approach, represent f as

f(l') = fsr(r) + flr(r) ’

where both f,,(r) and fi,(k) asymptotically have Gaus-
sian decay as functions of their respective arguments (de-
tails of this splitting are given below). Denote the cutoff
length of fsr BY max, i-€., | fsr(r)|r>r ., is less than the
desired precision. Equation (2.2) can then be rewritten
as

(2.3)

F'=b Z]. bj[for(ri5) + fir(ri)] = Fyn + Fi. , (24)
where

F:,, = b.,; Z“j <rmen bjfar(rij) (25)

and we write the long-range force contribution in the
form

Fi =bS(r;) = bi/p(r)fzr(ri —r)dr , (2.6)
where
N
p(r) = Z b;é(r —r;) (2.7)

is the density of Burgers vectors. S(r) is now a stress
function defined for continuous argument r (it is equal
to oy oOr oy, in the cases of edge or screw dislocations,
respectively).

Our procedure for evaluating the sum in Eq. (2.5) is
indicated in Fig. 1. One could divide the simulation box
into cells of size a = r,.x and consider the interactions
of all dislocations in cell C,, with those of neighboring
cells (and C,, itself). The average number of interactions
per dislocation would then be 5972 /2, where p is the
average density. Alternatively, one can choose @ K Tmax
and consider all cells within 7. of C,, with an aver-
age of pmr2,.. /2 interactions per dislocation; this method
would in principle be nearly three times faster. However,
going through the cells numerically takes time even if
they are underpopulated; so it is not favorable to have
too many of them. We choose a = rpax/4 (see Fig. 1).
As F;; = —Fji, we need to calculate the interactions of
each dislocation pair only once, so we consider only the
forces between cell C,, and those to the right of it.

The integral in Eq. (2.6) is a convolution of p and
fi» and can therefore be efficiently evaluated in Fourier

space:
S(k) = (k) fir () , (2.8)

where the Fourier transforms are normalized as follows:
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FIG. 1. Calculation of the short-range forces.

Z/f(r)e_“"'dzr, f(r) = (Zﬁ)_z/f(k)eik'rdzk

An obvious way to implement Eq. (2.8) would be to
evaluate

N
pk) = Z bje ki (for each value of k) (2.9a)
=1
and
S(r;)=1L ZZ deri g 1 (k), i=1,...,N.
{x}
(2.9b)

However, performing each of these two steps would in-
volve a number of operations proportional to the prod-
uct of the number of particles (N) and the number of k
values [O(N)]. Thus Egs. (2.9) correspond to an O(N?)
procedure and are unsuitable for numerical implementa-
tion.

Therefore, we instead use the P3M strategy of trans-
ferring the Burgers vector density and stress density to a
mesh. For this purpose, we introduce functions S™s®(r)

and p™°B(r) as follows:
mesh 1 n,—(r—r")2/202 5 1
p (r) = 27rr2 p(r')e idr’ (2.10a)
1
S(r) = 2M2 / Smesh (g~ (r—r"’/23 g | (2.10D)
which corresponds to
ek (k) = e~ 3K j(k) | (2.11a)
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15(k) ; (2.11b)
S(k) will always decay rapidly enough so that S mesh,(|)
has a well-defined Fourier transform. Here 7; and 7,
are spreading parameters. Precision estimates for the
numerical convolution and constraints on r; and r; are
presented in Appendix B.

Substituting Egs. (2.11) into Eq. (2.8) we obtain

Srmesh(k) —et 1k?

S’«mesh(k) — ﬁmesh(k)flr (k) e%kz (r3+r3) . (212)
We define one more function
fmesh(k) — flr(k) e%kz(r;+r?) (213)

[the choice of parameters will always ensure that
fmesh(k) — 0 as k — oo]. Equation (2.12) takes the
form

Svmesh(k) — fmeSh(k)ﬁmeSh(k) . (2.14)

Let us denote the size of the real-space mesh by A and
its mesh points by R,,. The corresponding k-space mesh
[8] has spacing 27 /L and is bounded by

2] < b (K] < Kimae (2.15)
with kmax = §.

The numerical procedure for implementing this
methodology will be determined by the precision param-
eter e. Each time we make an approximation, we require
that the resulting error be of order e. Our procedure is
linear, and therefore we expect the overall error to be of
order € as well.

The mesh version of Egs. (2.10) is

1 N
LS by e R

mesh
R,,) =
P (Rm) 2mr?
1 2 2
~ b; ~(Bm—r;)7/2ry
2mr? Z €
|Ry —rj|<rox
(2.16a)

S(r;) =

Z e—(Rm—ri)2/2r'f Smesh(Rm)

2
r
2 2 R

A2
27rr§ Z
IRm

—ri|<rpes

—(Rm—r;)?/2r2 Smesh(Rm) ,

R

(2.16b)

where r"3* = r1,24/21n(1). Typically, rPo* 2 rPex ~

5A, so each dislocation is spread over (and the force is
reconstructed from) about 100 mesh points.

The sequence of operations is as follows.

(1) Choose the mesh size A and ¢, 7, and r3 (described
below).

(2) Using Eq. (2.16a), find {p™=M(R,,)}.

(3) Fourier-transform  {p™*=}(R,,)} to
).

(4) Calculate {f™e}(k,,)} using Eq. (2.13) (this has

obtain
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FIG. 2. p™® (in relative units) for a pair of edge disloca-
tions on a 64 x 64 mesh. Parameters are chosen as ro = 2.384,
r1 = 1.084, r = 1.00A, which corresponds to the overall ac-
curacy of 107°. Each dislocation is spread over 113 mesh
points.

to be done only once).
(5) For each value of k., use Eq. (2.14) to get

{SmeSh(km)}. )

(6) Fourier-transform  {S™k(k,,)} to obtain
{Smeh(R,,)).

(7) Recover S(r;) from {S™hR,,)} using
Eq. (2.16b); finally, F} = b;5(r;).

Figures 2 and 3 show an example of {p™*"(R,,)} and

{S™esh(R,,,)} created by a pair of edge dislocations. Note
the long-range and anisotropic character of S™esb,

In the two following subsections we present the actual
form of the right-hand side of Eq. (2.3) for both types of
dislocations; the corresponding integrals are evaluated in
Appendix A.

A. Screw dislocations

Throughout this paper, £ and ¢ denote polar coordi-
nates in Fourier space, corresponding to r, 8 in real space.
The force between two dislocations is [9,10]

cos @

1) = £7(0) = np

(2.17a)

- —1icos ¢

Fk) = p—rp

We rewrite the right-hand side of Eq. (2.17a) as

(2.17b)

f(r) = cos@ [ —? /2% (1 _ e—r2/21'3>] . (2.18)

.2 2, . . .
Here, e~" /270 is rapidly decaying in r space, so we choose
J

1—e
k27l

z

edge
k) =7—1%

ek'ra/4 [cos ¢cos2¢ (4

—k?r3 /4 1 gek r0/4) 4 sm¢sm2¢o(
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mesh

FIG. 3. §™°P corresponding to p shown in Fig. 2.

cosl _ 2,52 / 1
::r(r) = ME;I'-T'— e " /2ro ) Tmax = T0 2In z

cose(l _

(2.19a)

while the Fourier transform of u e/ 2”g) is

3 2 2
Lieosd ey

feer (k) = A (2.19b)
B. Edge dislocations
In this case [9,10],
p cosfcos20
= f%(r) = 2.20
Fe) = fo(r) = LA STEEE (2.20a)
Fk) = — p tsin¢@sin2¢ . (2.20b)

1—-v k

It turns out that using a splitting analogous to Eq. (2.18)
would lead to an fedge(k) that has only power-law decay.
However, introducing one more Gaussian does the trick:

fodee cos @ cos 26 —3j202 g /pd
() = S (2e ey,
1
Tmax ™~ 7'0\/2111 pe
edge(r) cos 6 cos 20 (1 _ e—r2/21~§)2 (2.21a)

—v 2nr

so that the factor (1 — 6_72/2'3)2 o 7% (r — 0) cancels
the singularity of f(r) at the origin. Using Appendix A,
we have

e —k"3/4)] . (2.21b)

Note that the k-space decay is slower than in the case of screw dislocations but is nevertheless Gaussian.
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III. NUMERICAL IMPLEMENTATION AND
ERROR ESTIMATES

We use standard fast Fourier transform (FFT) routines
[8] which require that the number of mesh points M in
each direction be a power of 2, therefore, in our choice of
A, 1o, 71, and 72 we start with A = L/M; ro, 71, and
are then given by Egs. (B7).

We now estimate the operation count Q. In the short-
range part, each dislocation interacts with an average of
1pmrl,, others, where 5 = N/L? and rmax = Kr(€)A =
Kr(e)L/M, where Kr(e) depends on the precision e
and dislocation type T [Kr(€) is the product of rmax/70
given by Eq. (2.21a) or Eq. (2.19a) and ro/A defined by
Egs. (B7); note that Kz(e) o< In(1/€)]. Thus the oper-
ation count for computing the short-range interactions
is

_ N2KZ _ 5N?
T 16mM2 T M2

where 7y, is independent of N and M but depends on e.

The long-range part of the force calculation involves
two FFT’s using O(M2log, M) = vy, M?1In M? opera-
tions, where v, is a constant independent of all the pa-
rameters of the calculation. Performing steps (2) and (7)
from Sec. IT involves a number of operations proportional
to V; also, assigning dislocations to cells is an O(N) pro-
cedure. We denote all the O(N) parts by v2/N. The total
number of operations is therefore

Q

(3.1)

Qn (1) = v%N?/n+vinlnn + Ny, , (3.2)

where 7 = M?2. Minimizing this expression with respect

to n gives n = N, /§{(_174?1n_n)’ which can be solved itera-

tively,
Yo
=N,—X ..
71(1+1InN)

70 = N/ v /71, ™

so for simplicity we take n' = N, /_Y—l"{g—N; substituting

this into Eq. (3.2) gives

In (7:% In N)
2vVIn N

Since Qn(n°Pt) < Qn(n') by definition, and for large N,
In(2X In
In(5g In N) > 0, we may write

2vIn N

O (r') = o7 N2V N - ]+

QN (n°P) <2,/7071 NVInN + v, N . (3.3)

Therefore, our CPU time scales not worse than

O(N+InN).

Figure 4 shows our empirical results for CPU time as
a function of N, for various values of €. As seen in the
figure, the dependence on N is nearly linear, since the
function vInN is very slowly varying. The computa-
tional speed of the present method appears to be higher
than that of the multipole method of Wang and LeSar
[5]. For the purposes of comparing to other methods,
we note that the computational efficiency may be given
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FIG. 4. CPU time the SGI R 4000 uses to calculate the
set of forces for N edge dislocations with € of 1072, 1075, and
10~7. For comparison, the line shows the CPU time for direct
(nonperiodic) calculation using the same compiler options.

in terms of the speedup relative to the direct calcula-
tion using the same computer and compiler options. In
the present method, for an accuracy of 1073 (e = 107%),
the speedup is roughly equal to the number of dislocations
divided by 1000.

It is also useful to establish how the CPU time de-
pends on €. As mentioned above, 7 o In*(1/¢) and 7, is
a characteristic of the FFT code and thus does not de-
pend on €. The numbers of summands in Eq. (2.16) are
proportional to 7? and 72 respectively, while both 7 and
rZ themselves are proportional to In(1/¢). Therefore, v,
is quadratic in In(1/€). We can finally rewrite Eq. (3.3)
as

Q(N, &) ~ Nln (%) [a\/ﬁ+ﬂln (%)] (3.4)

This indicates a very favorable scaling of CPU with re-
spect to the accuracy. Indeed, Fig. 4 shows that increas-
ing the accuracy by 4 orders of magnitude results in only
moderate increase in CPU time.

In order to evaluate the accuracy of € in predicting
the errors in the forces, we compare the values of the
forces with those obtained by direct summation (still in
the supercell geometry):

B oo
Feace = bi lim [Z_., b; . f(zji+pL,yji +qL)
P,g=—00
xe—~[(wj-'+PL)’+(yj.~+qL)’]] , (3.5)

where p and q are integers. Table I shows that our pre-
cision measure € approximates the actual error within a
factor of 2.
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TABLE I. Comparison of the forces obtained directly using
Eq. (3.5) with those obtained using our P*M algorithm. Ran-
dom test configurations were taken except those marked by
“},” where we chose a configuration with vanishing moments
up through the octupole in order to speed up the convergence
of the sum in Eq. (3.5). The numerical values are normalized
so that the absolute values of the forces are of order 1.

N Type M € rms (F — Fexact)
18 edge 128 1073 1.67 x 102
18 edge 128 10~* 1.21 x 10~
16t edge 128 10~7 1.52 x 1077
161 edge 128 10°° 1.38 x 107°

IV. VECTOR FORCES

We now describe the generalization of the preceding
results in order to obtain all the components of the force
for non-parallel Burgers vectors.

In the case of screw dislocations, in addition to
Eq. (2.17a) we have to consider the y component of the
force given by

sin @
ff=un ,

27r

which can be tackled analogously to f;, as indicated in
Table II.

The force between two edge dislocations with Burgers
vectors by and b, is [10]

- 7 o[ ,oc0s0cos20 ., sinfcos20
7= 2w (1—v) ':bl <b2 r + b2 r
2 Sin 6 cos 20
pe

€08 0(2—cos 20)
+b — "

4 (4.1a)

FY =+

7 = [ ,5in0(2+cos 26)
S 5 fa SRRt
2n(1—v)

b3

r

cos 0 cos 20)

» Cos 6 cos 20 sin 6 cos 26
—bY (b2 = + b3 " )] . (4.1b)

We have already described the treatment of the first term
in Eq. (4.1a). In addition, there are terms with three dif-
ferent 0 dependencies: cosf/r, sin@/r, and sin 6 cos 26 /7.
Table II summarizes the implementation of Eq. (2.3) for
all the four functions.

The density of Burgers vectors is now a vector and S(r)
is a tensor:

= o —
Ir = S(rl) b; .

From the Peach-Koehler formula [9,10] it follows that s
is related to the stress tensor as follows:

Sex Sey ) _ [ Oy Oyy
Sy Syy T\ Oz —Ozy

Equation (2.6) becomes

TABLE II. Splitting into the long-range and short-range parts of the edge dislocation forces for

the terms in Eqs. (4.1).

f(r) for(r) fir (k)
co:9 co:ge—rz/ng _27ric:sQe—%k2rg
six71.9 si:Ge—rz/ng Zwisi’:xfe—%kzrg

cos 6 cos 26
™

22 /0.2 2 /0.2
cosB:osZGe r4/2r§ (2—-6 g /27-0)

2mi —k3r2 /4 sin ¢ sin 2 —k%r2/4
HremHo/t] —qnlrRRe(1 — emH o/t

1—e—k2r3/4a

+ cos ¢ cos 2¢ (4—7—’1:% +1-— 2e—kzr3/4>:|
o

sin 0 cos 26

. .2 2 .2 2
= sxn@:os29€ 4 /2rg (2—6 L /21‘0)

2mi —kzrg/li cos ¢ sin 2 —k2r2 /4
e 4——Q-r2k2ro (1—e 0/%)

e—k3rd /4

+ sin ¢ cos 2¢ (4———,————1‘ e +1-— ze—kzr;‘;/‘l)]
o
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Sas(ri) = / 297 (v — 1)py () d(r)

where the components of the 2 x 2 x 2 matrix fﬁ67 are
easily constructed from the eight summands in Egs. (4.1)
using the table. Note that from Eq. (4.2) it is clear that
Sze(r) = —Syy(r) [which is consistent with Egs. (4.1)],
therefore only three components of ? need to be calcu-
lated.

It turns out that the evaluation of the forces in this
case takes only about 2.5 times longer than in the simple
case described in Secs. II and III because much of the
calculation is shared by different terms, e.g., the expo-
nentials in Egs. (2.16). Overall accuracy in this case is
several times lower than in Table I and is about 10e.

V. CONCLUSION

The main conclusion of the above is that it is pos-
sible to obtain a useful O(IV) particle-particle-particle-
mesh method for dislocation interactions. This method
has the virtues of formal simplicity, computational effi-
ciency, and a very attractive scaling of CPU time with
increasing accuracy. It can also be easily parallelized.
Our method is comparable in speed to the recently pub-
lished multipole method of Wang and LeSar [5,11], and
we believe that the simplicity of the present method may
be very advantageous in developing a methodology for a
fully three-dimensional calculation.

A possible extension to three dimensions is as follows:
start with the expression for the interaction energy of two
dislocation loops C; and C; [10]:

(b b dl
Wy = __f f 1 X bz] - [dl1 x dl]
c Jo,

}{ f dll)(bz dl,)
c Je,

77(1—’/) c Je,

(b1 X dll) -T- (bz x dlZ) 9

where T,g = 82r/8z,0z3. The force that loop 2 exerts
on dl; is

F=+L ]{C 2 V(b1 x ba] - [dl; x dlg))

_k L .
o fczvr(b1 dly) (b2 dly)

I

m (b1 X dll) vT- (b2 X dlz) .

J

fcos(@) exp (i€ cos 0)dO = 2miJ(§) , fcos (0) exp(i€ cos §)do =

Second,

e _ VT sy, (P
A e J.(Bz)dz = 2\/& I (804) )

which we also need for n = 1 and 3:
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Since multiplication of the r-space functions by even
powers of r fails to regularize them around the origin, it
is necessary to do the splitting in k£ space. The Fourier
transform of V— is —4mik /k? which suggests a splitting of
the form f,,(k) = —4mik exp(—1k?r2)/k? and f,,(k) =

—exp(— 1 k2
——47rikl%2kr°) for the first two terms. In the third
term, the formal Fourier transform of r is 8w /k*, so
8%r/8z,0x30z. transforms to —8mikokgk,/k*. There-
fore a splitting such as

[1 — exp(—3k?r3)]?

Q,B’Y(k) =

—8mikokgk,

1k212) — exp(—k?r3)
k4 ’

2 exp(—

FoPY (k) = —8mikaksk,,

will work.

Otherwise, the procedure should be completely analo-
gous to that described here, once one has resolved prob-
lems such as, for example, how to parametrize and store
the dislocation lines, and treat dislocation crossings.
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APPENDIX A: CALCULATION OF FOURIER
TRANSFORMS OF FORCES

We use two general formulas [12]. First,

fexp(iﬁ cos 0)df = 2w Jo(§)
(where §df = 02" df), from which it follows that

fcos"(@) exp(i€ cos 0)dO = 2mr——Jo(€) ,

dr
ndﬁn
which we will need for n = 1 and 3; using well-known
relations for the Bessel functions, we have

3J1( ) —
2

I(6)
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oo

e Jy(Bz)dz =

I
/0"" e~ J3(Bz)dz = 1 [1 Ba | (1 + ——) e“f’z/““]. (A2)

B 8 B?
We begin by deriving Eq. (2.19b) (we omit p and v-dependent constant factors for clarity). We have

f(k,¢) ::/ rdrfdg ﬂ e—ikrcos(0—¢)
0 r
= / drfd@ COS(0 -+ ¢) e—’ikr cos @

_ _2n cosqﬁ Jo(kr)

(1 — e B /1), (A1)

|~

= —2micos qS/k ,

where we have used angle-addition formulas. Note that the sin¢ term vanishes because the function sin § e~%" cosé

is odd.
It is now easy to see that
/oo rdr f do cos @ (1 _ e—rz/zrg) e—ikr cos(6—¢)
0 r
1 s 202 d
—_ . - —r‘/2r
2micos ¢ (k +/0 dr e 0 [—d(kr)] Jo(kr))

fir (K, 8)
= —27icos ¢ (% — /°° dr J1(kr)e—r2/2r§)
0

27i cos ¢ k22
k

Now derive similar expressions for edge dislocations:

f(k, d)) = /oo rdrfda C_O_S_GE_O_S_@_)_ eikr cos(6—¢)
0 ™

= / drfda cos(0 + ¢) cos(20 + 2¢) e tkreos?
0

Il

Rl oo
= cos ¢ cos 2¢ / dr f df cos 0 cos 20e T <39 4 sin $sin 2¢ / dr f df sin @ sin 20~k coso
0 0
e oo
= cos¢cos 2(25/ dr f df(2 cos® 0 — cos B)e 50 L sin ¢sin 2¢ / dr % df(2cos® — 2 cos® f)e Pk cos®
0 0

= —mi [cos¢c0s 2¢ Loo dr [Jl(kr) - J3(k7‘)] + sin ¢ sin 2¢ /0'°° dr [Jl (kr) + J3(k7‘):|]

= ——g—;’; sin ¢sin 2¢ .

‘We use this derivation to write

fedge(k,(b) - /oo Td’l‘fdgcosgcosza(l _ 26—1'2/21'3 + e—rz/rg) e—ikrcos(9—¢)
0

r

. [2 sin ¢ sin 2¢
- | ————————

oo
A + cos ¢ cos 2¢/ dr(Jy(kr) — Jg(kT)](—ze-rz/zrg + e—rz/rﬁ)
0

+ sin ¢ sin 2(;5/ dr(Jy(kr) + J3(kr)](w26—rz/2"§ +e- /e ):| ,
0

which we can now expand and use Eq. (A2) to calculate each of the four resulting integrals. The result is

—k3r3/2 _ e—kzrg/4
2,2
k2rd

edge(k) ——" [COS¢COS 2¢ ( ¢ + 26—k2r3/2 _ e_kz,.g/4)

2.2
k2rg

+ 4sinq’>sin2¢ (e—k’fg/‘i _ e-—k’rg/z)] '
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APPENDIX B: PRECISION ESTIMATE AND
CONDITIONS FOR ro, r;, AND r;

The long-range force calculation is approximate. The
errors are caused at the following steps.

(1) Truncation of the second sum in Eq. (2.16a) for
pmes}'{R}.

(2) Sampling of p™e"(r) to perform the discrete
Fourier transform to obtain p™es®(k).

(3) Inverse discrete Fourier transform to obtain
(fmesh o pmesh)(R) from fmeSh(k)ﬁmes}‘(k).

(4) Approximation of the integral in Eq. (2.10b) with
the sum in Eq. (2.16b).

We evaluate the errors at each step separately, with
overbarred symbols denoting the approximate values and
require that those errors be of order € so that the overall
error will be of the same order.

In this section, we repeatedly use the formula

A2 Z 5(1‘—Rm) — Z e——iKz.r’

{Rm} {K:}

(B1)

where {R,,} means the real-space square mesh with size
A while the reciprocal {K;} is a square mesh with spacing
2m/A. (Note that the k mesh we use for the Fourier
transforms has the size 27 /L.)

1. Calculation of the mesh-point density

For each mesh point R,,, we ignore the contributions
to p™eh(R,,) in the second sum of Eq. (2.16a) from the
dislocations that are 7*** and further away, causing an
error of order € at each mesh point.

2. Errors of Fourier transform in obtaining ™"

For the Fourier transform of p™®, we require that
Foet (k) (57" (k = k) — 5™ (km)]| S€, V.
(B2)

[ fmesh(k, ) is exact up to the computer precision.] We
have

pmesh (k) = A / drp™e(r)e=*m* 3" §(r — Rm)
{Rm}

— Z /drpmesh(r)e—ikm~re—-il(,-r
{K:}

— Z ﬁmesh(km +Kl)
{K:}

=ﬁmeSh(km)+ Z ﬁmeSh(km+Kl),

{K;>0}

so Eq. (B2) means that

Z fmesh(km)ﬁmesh(km + K[) S €,
{K.#0}

Vm . (B3)

3203

Notice that the values of k,,, are within /A of the origin
in both = and y directions [cf. Eq. (2.15)] while the non-
zero values of K; begin at 2w/A. Let us estimate the
largest term in this sum. _

(i) Edge: The long-range decay of fmesh js determined
by e’!'z‘n(%"g_’?"'g), and that of p™esh by e‘%k2'f, so the
term in the sum in Eq. (B3) is proportional to

2 p2 K2r2
exp l:—kfn<—49— 7) —km-Klr%——lzljl .

Its maximum value with respect to k,, is

2 2 2
2. 270 — 71— T2
exp| —Kiri—5——F3 ] >
( 2rg — 4ri

whose maximum is reached at the minimum (nonzero)
value of K7, i.e., (2m/A)%. We must therefore demand
that

2n2r2(r2 — 2r2 — 2r2)
A2(r% — 2r2)

exp [— ] <e€ (edge) . (B4a)
(ii) Screw: The difference is that fmesh decays like

e (i—ri—rd), Changing 1r3 — r} in Eq. (B4a) we

obtain

2,.2(,.2 2 2
2nlri(rg —ri{ — 73

A7 D)

exp [— )] < e (screw) . (B4b)

3. Inverse Fourier transform to obtain
(fmenh o pmesh)(R)

The mesh Fourier transform fmesh(k,,)smesk(k,,) dif-
fers from the continuous f™esh(k)p™et(k) in two ways.
First, the latter integrates over the entire k plane while
the values of k,, are confined within a finite box (of size
kmax)- Also, the k;,,’s are discrete while k is continuous:
this leads to the periodicity of the force with the period
L.

We address the first of these by requiring that
f”“"*‘h(k)pm‘”‘h(k)|k>kmax < e. Using Eq. (2.12), we ob-
tain

2
exp {—m(%rg — 1'22,)] < € (edge) , (B5a)

2
exp[{E(r%—r%)] <e (screw).  (BSb)

4. Obtaining F at dislocation positions from
Smesh (R)

We need to approximate the integral in Eq. (2.10b)
with the second sum in Eq. (2.16b). There are two errors:
that of cutting the integration off at ' = r5** and that
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of doing the sum discretely over the mesh points:

2
F(rz) = A_ / dl‘ISmESh(l")e_(ri_!")2/21';‘:
2772 [t cpmax
Y R
{Rn}

Flr) - Flr) = =2, 3

{K;#0}

The first error is of order € because of our choice of
In order to evaluate the second, we use Eq. (B1) to write

max
2 .

F(I'l) — Z /dl” Smesh(rl)e—(r,-—r')z/}r;eiK,.r' .
{K:}

Therefore,

drISmesh(rl)e-(r,--r')2/21'22 e—iK,.r'

b; I o—(ri—t')? /202 —iK;r' dk  zimesh iker'
=_— Z /dre ( )7/2rs g—iKir /(27r)25 (k)e

{K;50}

_ b; Z / (;7.‘1-{)2 fmeSh(k)ﬁmeSh(k) / drle—(r‘._,.l)2/2r§ eir’,(k—Kz)

{K.#0}

N
s 3
[ V] 8V

; ; dk
— —iK;r;
- 2mrd q Z ¢ / (2m)?

Kz;\fO}

2
7o) (2m)

As in the derivation of Egs. (B4), we require that the inte-
grand be bounded by € and find its maximum value using
asymptotic expressions for p™ and f™es®, The expres-

1
for edge and exp [—3k%r2 + k- K;rj — $ K}?r}| for screw
dislocations. The conditions become

. PR K*rd
sion to maximize is now exp [— o +k-K;rZ— %Klzrg}

2n2r2(ri + 2r2)

exp [— 4203 ] < € (edge) , (B6a)
2m213(r3 + 3)
exp I:_—AE;—S—H—] < e (screw) . (B6b)

fmesh(k)ﬁmesh(k)eikr,- /dre—r2/2r§ 6'L'x--(Kl —k)

bi Z e'-iKz.r,- dk meSh(k)f)meSh(k)e_%(k"Kl)zrgeik-ri ‘

5. Resulting relations for 7o, 71, and 72

The parameters 7o, 71, and r, have to meet three con-
straints: Egs. (B4), (B5), and (B6). For optimization,
we turn them all into equalities and find that

4
rZ = %2, =2, =S8 (edge) (B7a)
4
ré= 1—3(il2 ,ri=20% r2= glz (screw) . (B7b)
where % = % Ini.
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